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Abstract—In this work, we propose a deep neural network,
P3DAttnNet, for automatically generating assembly plans from
video demonstrations. We develop a spatio-temporal attention
model to recognize actions from the video. We apply a functional
object-oriented network to model the assembly plan. We evaluate
our network on IKEA ASM dataset consisting of 371 unique
assemblies having 1113 RGB videos and 371 depth videos.
We perform quantitative analysis along three metrics - Frame
accuracy, Macro-recall, and Mean average precision (mAP) to
evaluate the efficacy of our approach. We compare our approach
with the existing baseline and significantly outperform on all these
metrics.

I. INTRODUCTION

Cellular manufacturing requires considerable labor and is
significantly dependent on manpower. To enable robots to
perform such manufacturing tasks without providing detailed
instructions of the task, a robot must be able to automatically
understand the details of the task and accomplish it based on
simple or ambiguous knowledge of the task. Video demonstra-
tions are usually available for the assembly of certain products,
such as furniture. There is a need to understand the assembly
instructions from such videos.

Video analysis has many real-world applications, including
behavior analysis, video retrieval, human-robot interaction,
gaming, and entertainment [14]. Over the last decade, there
has been a growing interest in video action recognition with
the emergence of high-quality, large-scale action recognition
datasets [8][14] and advancements in deep learning based
approaches [2][5][6]. Generating assembly or disassembly
sequences from instructional videos is still an active area of
research [11].

In this work, we propose a deep neural network,
P3DAttnNet, for automatically generating assembly plans from
video demonstrations. We develop a spatio-temporal attention
model to recognize actions performed in a video. We apply
a functional object-oriented network to model the assembly
plan graph. We evaluate our network on the IKEA ASM
dataset consisting of 371 unique assemblies having 1113
RGB videos and 371 depth videos. We perform quantitative
analysis along three metrics - Frame accuracy, Macro-recall,
and Mean average precision (mAP) to evaluate the efficacy

of our approach. We compare our approach with the existing
baseline and significantly outperform on all these metrics.

II. RELATED WORK

Synthesizing an assembly plan from a video demonstra-
tion is an active area of research. Many studies have been
conducted to construct assembly sequences based on the
geometrical relationships of assembly parts. Paulius et al.
[4][9][10] model cooking instructions in the form of a graph
based on a video demonstration. They propose a graph based
knowledge representation called Functional Object-Oriented
Network (FOON) to denote a set of task instructions. The ap-
proach provides a structured knowledge representation which
is constructed from observations of human activities and ma-
nipulations. FOON expresses the relationship between motions
and objects, and the change in the object state owing to
those motions. They manually construct these functional units
by labelling instructional videos. Our work is inspired from
[11], where they generates an Assembly Task Sequence Graph
(ATSG) by recognizing a graphical instruction manual. An
ATSG is a graph describing the assembly task procedure by
detecting types of parts included in the instruction images.
Hussein et al. [1] propose a graph based network to recognize
minutes-long human activities consisting of a set of unit-
actions. Aksoy et al. [12] generate a textual description for
an unseen complex from the video. Nicolescu et al. [13]
propose a framework for directly mapping a complex verbal
instruction to an executable task representation, from a single
training experience. Jonathan et al. [15] generate a graphical
representation by recognizing activities from assembly videos
in the form of change in kinematic state of objects. The change
in states predicted by the model is generalised in the form
of connect or disconnect. They test the model on egocentric
videos of an Ikea chair and third person block assembly
RGBD videos with inertial measurements. Carreira et al. [2]
propose a Two-Stream Inflated 3D ConvNet (I3D) that is based
on 2D ConvNet inflation to learn seamless spatio-temporal
feature extractors from videos. Unlike prior approaches, our
work focuses on recognizing a complex assembly sequence
from a video demonstration. We extract information about



Fig. 1: Actions predicted by our network from a video demonstration (clipped video). The predicted actions are used to generate
the assembly plan.

Fig. 2: The input video is fed to the Pseudo 3D blocks to generate the feature maps. Then, we apply spatio-temporal attention
model to automatically learn the discriminative regions from each image frame. The network predicts per frame action labels.

the assembly parts from the instructional video and estimate
several feasible actions needed for the assembly task.

III. APPROACH

Our goal is to generate an assembly plan from a video
demonstration. We apply 3D convolutions [6] to encode the
spatio-temporal information. 3D convolutions simultaneously
model the spatial information like 2D filters and build temporal
connections across frames within the video. 3D convolutional
filters are represented as d * k * k where d is the temporal
depth of the kernel and k is the kernel spatial size. We use a
Pseudo 3D (P3D) block to extract the feature representations
from a video. In a Pseudo 3D block, the 3D convolutional
filters (with size of 3*3*3) is decoupled into 1*3*3 convo-
lutional filters equivalent to 2D CNN on spatial features and
3*1*1 convolutional filters equivalent to 1D CNN for temporal
features.

P3D has three residual blocks (P3D-A, P3D-B, and P3D-
C) designed based on (a) whether the modules of 2D filters
on spatial dimension (S) and 1D filters on temporal domain

(T) should directly or indirectly influence each other and (b)
whether the two kinds of filters should both directly influence
the final output. The three residual blocks are shown in Figure
3.

P3D-A: In this block, the temporal block follows the
spatial block in a cascading manner. The two blocks directly
influence each other and only the temporal block is connected
to the final output.

P3D-B: In this block, the spatial and temporal blocks are
connected in parallel and indirectly influence each other. Both
the blocks are connected to the final output.

P3D-C: In this block, the temporal block follows the
spatial block in a cascading manner. Both the blocks are
connected to the final output.

We apply a spatio-temporal attention model to automatically
learn the discriminative regions from each image frame. The
network architecture is shown in Figure 4. The spatio-temporal



Fig. 3: Pseudo 3D Blocks

Fig. 4: Spatio-temporal Attention module: Given a set of feature maps from the input video, we generate corresponding
attention maps for each frame. The attention maps are horizontally split into K blocks. We apply L2 norm to compute attention
score for each spatial region of different frames. Temporal attentions compute an aggregate representation for the set of features
generated by each spatial attention model. Finally, the spatio-temporal features are concatenated into a single feature which
represents the information contained in the entire video sequence.

attention block assigns attention weights to each spatial re-
gion in different frames. These attention weights include

both spatial and temporal attention information. This helps
in recognizing the discriminative regions and thereby frame



TABLE I: Action verb, object name and action description
from IKEA ASM dataset [8]

Id Verb Object Description
0 - - No Annotation (NA)
1 align leg align leg screw with table thread
2 align side panel align side panel holes
3 attach back panel attach drawer back panel
4 attach side panel attach drawer side panel
5 attach shelf attach shelf to table
6 flip table flip table
7 flip shelf flip shelf
8 flip table top flip table top
9 insert pin insert drawer pin
10 lay down back panel lay down back panel
11 lay down bottom panel lay down bottom panel
12 lay down front panel lay down front panel
13 lay down leg lay down leg
14 lay down shelf lay down shelf
15 lay down side panel lay down side panel
16 lay down table top lay down table top
17 - - other (unavailable action class)
18 pick up back panel pick up back panel
19 pick up bottom panel pick up bottom panel
20 pick up front panel pick up front panel
21 pick up leg pick up leg
22 pick up pin pick up pin
23 pick up shelf pick up shelf
24 pick up side panel pick up side panel
25 pick up table top pick up table top
26 push table push table
27 push table top push table top
28 rotate table rotate table
29 slide bottom panel slide bottom of drawer
30 spin leg spin leg
31 tighten leg tighten leg
32 position drawer position the drawer right side up

selection. Given the feature maps of video f = f1, f2, ..., fN ,
we compute corresponding attention map gn by performing L2
normalization on the square sum through the depth channel.

gn(h,w) =
||
∑D

d=1 fn(h,w, d)
2||2∑H,W

h,w ||
∑D

d=1 fn(h,w, d)
2||2

(1)

where H and W are the height and the width of the feature
maps. Each frame has a corresponding attention map. The
feature map is divided into K blocks horizontally each having
corresponding attention maps.

gn = [gn,1, gn,k..., gn,K ] (2)

fn = [fn,1, fn,k..., fn,K ] (3)

where gn,k represents the spatial attention map of the kth

region of the nth frame. Then, we apply L1 normalization on
all values in each block to obtain one spatial attention score
for that region.

sn,k =
∑
i,j

||gn,k(i, j)||1 (4)

The same procedure is followed on all the selected frames
of the input video to obtain the N * K matrix S of spatial
attention scores.

All the parts of an object are not clearly visible in every
video frame because of self-occlusion or an explicit foreground
occluder. Therefore, pooling features across time using a per-
frame weight αn is not sufficiently robust, since some frames
could contain valuable partial information (e.g. other parts
for context). Instead of applying the same temporal attention
weight αn to all features extracted from a frame n, we apply
multiple temporal attention weights αn,1, . . . , αn,K to each
frame, i.e one for each spatial component. With this approach,
the temporal attention model is able to assess the importance of
a frame based on the relevance of the different salient regions.

We define the temporal attention αn,K for the spatial
component k in frame n to be the softmax of a linear function

en,k = (wt,k)
T .sn,k + bt,k (5)

where sn,k ∈ RD is the feature of the kth spatial component
in the nth frame, and wt,k ∈ RD and bt,k are parameters to
be learned.

The temporal attention model directly computes a soft
attention weight for each frame. The importance weight αn,k

for each frame is

αn,k =
en,k∑N
j=1 ej,k

(6)

The weighting mechanism decides the importance of a
frame based on the spatial regions. The temporal attentions
are used to enhance spatial features by weighted averaging

sk =

N∑
n=1

αn,ksn,k (7)

Finally, the entire input video is represented by a feature
vector s ∈ RK∗D generated by concatenating the temporal
features of each spatial component

s = [s1, ..., sK ] (8)

Generating Assembly Instructions: To generate the assem-
bly plan, we leverage the concept of functional object-oriented
network (FOON) [4]. A FOON represents a graph for several
activities. It is a sequence of functional units that captures
information on the objects, manipulations and actions required
to fulfill the task’s goal. It consists of two types of nodes in
its bipartite structure: object nodes and motion nodes. Object
nodes refer to objects that are used in activities, e.g. leg, side
panel, shelf, and drawer, while motion nodes refer to actions
that can be performed on said objects such as flip shelf or
push table. A FOON is a directed graph, as some nodes are
the outcomes of the interaction between other nodes. An edge,
denoted as E, connects two nodes. Edges are drawn from either
an object node to a motion node, or vice-versa.

The proposed assembly plan is a graphical representation
of all object interactions and the associated actions observed
in the assembly video. It is a directed graph where each node
represents an object (a part of the product being assembled)
or an action (a motion acting on one or two objects causing a



Fig. 5: The generated assembly plan from our approach for TV Bench (partly shown here). The highlighted arrows indicate
instructions that our model was not able to predict from the video. These instructions have been added manually for the sake
of completion.

Fig. 6: The generated assembly plan from our approach for TV Bench (partly shown here). The highlighted arrows indicate
instructions that our model was not able to predict from the video. These instructions have been added manually for the sake
of completion.



change in the state of the object). We use a list similar to an
adjacency list for a graph, to represent our assembly plan. Each
element of the list represents a single action acting on an object
resulting in a new state for the object. Generating the assembly
plan involves - (a) filtering the output of the action recognition
model by removing low confidence predictions (we choose a
threshold of 0.5) and (b) tracking each object based on a list
of objects and the effects of different actions on these objects.

TABLE II: Performance of our approach along three metrics
and comparison with baseline

Approaches Frame accuracy Macro-recall mAPTop 1 Top 3
ResNet18 [7][8] 27.06 55.14 21.95 11.69
ResNet50 [7][8] 30.38 56.1 20.03 9.47

C3D [5][8] 45.73 69.56 32.48 21.98
I3D [2][8] 57.57 76.55 39.34 28.59
P3D [6][8] 60.4 81.07 45.21 29.86

P3DAttnNet (ours) 69.23 87.48 56.75 43.11

IV. EVALUATION AND RESULTS

A. Dataset

The IKEA ASM dataset consists of 371 unique assemblies
of four different furniture types (side table, coffee table, TV
bench, and drawer) in three different colors (white, oak, and
black) [8]. There are 1113 RGB videos and 371 depth videos
(top view) in total. The dataset contains 3,046,977 frames
(∼35.27h) of footage with an average of 2735.2 frames per
video (∼1.89min). The dataset contains a total of 16,764
annotated actions with an average of 150 frames per action
(∼6sec). Table I shows the list of objects and atomic actions
in the IKEA ASM dataset.

B. Experimental-setup

We use Adam optimizer with an initial learning rate of
0.001. We train our model for 300 epochs with a batch size
of 10. We use LeakyReLU activation. We split our dataset
into train and test set consisting of 254 and 117 assembly
demonstrations respectively.

C. Results

We evaluate our approach for action recognition using three
metrics [8]: (i) Frame-wise accuracy (FA): Fraction of the
number of correctly classified frames to the total number of
frames in each video, averaged over all videos in the test set,
(ii) Macro-recall: As the dataset is imbalanced, we report the
macro-recall by separately computing recall for each category
and then averaging it, and (iii) Mean average precision
(mAP): As all the videos contain multiple action labels, we
compute mean Average Precision. The mean Average Preci-
sion (mAP) score is calculated by taking the mean AP over
all classes. Table II shows the performance of our approach
with respect to these metrics on the IKEA ASM [8] dataset.

We observe that our model fails to predict instructions accu-
rately from video frames under the following circumstances:

1) The human makes a mistake or is confused while
performing the action.

2) The object involved in the action is very small or
occluded (as in the case of a drawer pin).

3) The human performs the action too quickly and jumps
to another action.

Comparison: We compare our approach with state-of-the-
art methods - C3D [5], I3D [2], P3D [6], and Frame-wise
ResNet [7], for action recognition along these three metrics.
Our approach significantly outperforms the existing work
across all the metrics (as shown in Table II). We observe a
relative increase of 14.6% in Frame accuracy (Top 1), 25.5% in
Macro-recall, and 44.37% in mAP (on test set) in comparison
with P3D (existing baseline).

The assembly plans for TV Bench and Shelf Drawer gener-
ated by our approach (from test dataset) are shown in Figure
5 and Figure 6 respectively.

V. CONCLUSION

We propose a deep neural network, P3DAttnNet, for au-
tomatically generating assembly plans from video demonstra-
tions. We develop spatio-temporal attention model to recognize
actions from a video. We evaluate our approach on the IKEA
ASM dataset consisting of 371 unique assemblies having 1113
RGB videos and 371 depth videos. We compare our approach
with the existing baseline and significantly outperform on three
metrics. As future work, we plan to integrate our system with
robotic assembly planning, where robots can assemble IKEA
furniture based on the instructions generated by our approach.
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